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Abstract—Conjugated dienes are able to react as 1,2- or 1,4-dicarbanions by coordination on Ti(II) moiety. These two possibilities
are exemplified in this letter with isoprene, myrcene and several aldehydes to give 1,4- and 1,6-diols. When allowed to react with
esters at room temperature, the titanium–diene complexes lead to cyclopentenol derivatives. Surprisingly, when this reaction is per-
formed at lower temperature (�40 �C), allylic ketones are formed with high regio and diastereoselectivities.
� 2006 Elsevier Ltd. All rights reserved.
A wide variety of beautiful organic syntheses result from
Kulinkovich’s method.1 It involves the generation of
alkene–titanium reagents through an exchange of
ligands of the in situ formed (g2-ethylene) or (g2-pro-
pene)Ti(OiPr)2 complex, and their use as dicarbanion
source with various electrophilic substrates. In this field,
only few works are relevant to the employment of
conjugated dienes. de Meijere and co-workers have ob-
served that they behave as 1,2-dicarbanions due to the
vinyltitanacyclopropane intermediates A and C whereas
Sato and co-workers mentioned a titanacyclopentene B
with 1,4-dicarbanionic properties (Fig. 1).2,3 Formation
of the same five-membered intermediate was recently
proposed by Goeke et al. when Ti(OiPr)4 is treated with
2 equiv of butenylmagnesium chloride.4
Figure 1. Conjugated diene–titane complexes A–C.
As a continuation of our efforts on organic synthesis
mediated by titanium derivatives,5 we have investigated
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the reactivity of two dienes, isoprene and myrcene,
towards aldehydes and esters according to the Kulin-
kovich methodology; we wish to report here our main
results.

Benzaldehyde has been condensed first at low tempera-
ture (�40 �C) on the isoprene complex generated
in situ by the ligand exchange method.6 After warming
the solution to room temperature, the reaction mixture
was stirred during 1 h and quenched with water. Usual
treatment offered the two diols 1a and 2a in 1/2 ratio
(Table 1, entry 1). Thus, while Goeke et al. reported that
the butadiene complex leads exclusively to hex-3-ene-
1,6-diol,4 the analogue isoprene complex behaves both
as a 1,2- and 1,4-dicarbanion. This difference suggests
that methyl substitution at the diene ligand gives rise
to higher nucleophilicity of the substituted double bond
allowing the diene to display its 1,2-dicarbanion proper-
ties. On the other hand, switching benzaldehyde to
bulkier aldehydes such as isobutyraldehyde and pivalal-
dehyde led exclusively to 1,6-diols (2b and 2c, Table 1,
entries 2 and 3). We suggest that the absence of 1,2-con-
densation adduct in both the last cases may be due to
steric factors. A similar regioselectivity was observed
with myrcene. Thus, while the coupling with acetalde-
hyde and propanal led to a mixture of 1,4- and 1,6-diols,
the reaction with isobutyraldehyde afforded exclusively
the 1,6-diol 2f (Table 1, entries 4 and 5 vs 6).

Remarkably, each diol has been isolated as a single
diastereoisomer. Thus, this coupling which creates two
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Table 2. Synthesis of cyclopentenols 3 from esters and 1,3-dienes
assisted with titanium complex

Entry R R 0 Yield (%)

1 Me Me 30 (3a)
2 Me Et 45 (3b)
3 Me Ph 45 (3c)
4 Me Bn 60 (3d)
5 (CH2)2CH@CMe2 Me 70 (3e)
6 (CH2)2CH@CMe2 Et 60 (3f)
7 (CH2)2CH@CMe2

iPr 65 (3g)
8 (CH2)2CH@CMe2

tBu 55 (3h)

Table 1. Synthesis of 1,4-diols 1 and 1,6-diols 2 from aldehydes and
1,3-dienes assisted with titanium complex

Entry R R0 1 Yield (%) 2 Yield (%)

1 Me Ph 11 (1a)a 23 (2a)a

2 Me iPr — 38 (2b)a

3 Me tBu — 18 (2c)a

4 (CH2)2CH@CMe2 Me 17 (1d)a 51 (2d)a

5 (CH2)2CH@CMe2 Et 15 (1e)a 36 (2e)a

6 (CH2)2CH@CMe2
iPr — 69 (2f)a

a Product isolated as a single diastereoisomer.
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or three chiral centres proceeds with a complete diaste-
reoselectivity. Suitable crystals for X-ray diffraction
have been obtained by slow evaporation of a CH2Cl2/
pentane solution of 2a.7 The ORTEP view represented
in Figure 2 shows that both enantiomers of the pseudo-
meso diastereoisomer 2a crystallise in the unit cell
with a square shape hydrogen bonds network. In addi-
tion, the geometry of the double bond can be attributed
to be Z which is in accordance with the literature.4
Figure 2. ORTEP view of the racemate of the pseudo-meso diastereo-
isomer 2a.

Table 3. Synthesis of allylic ketones 4 and 5 from esters and 1,3-dienes
assisted with titanium complex

Entry R R0 4 Yield (%) 5 Yield (%)

1 Me iPr 48 (4a) —
2 (CH2)2CH@CMe2 H 22 (4b) —
3 (CH2)2CH@CMe2 Me 54 (4c) —
4 (CH2)2CH@CMe2 Et 57 (4d) —
5 (CH2)2CH@CMe2 Bn 58 (4e) —
6 (CH2)2CH@CMe2

iPr 35 (4f) —
7 (CH2)2CH@CMe2

tBu — 35 (5g)
To extend the scope of this reaction, we applied the
same procedure with esters. Thus, esters were added at
�40 �C to the preformed titanium isoprene complex.
Then, the solution was allowed to stir at room tempera-
ture during 3 h and quenched with water.8 Usual treat-
ment afforded the cyclopentenol 3 in moderate to good
yields (Table 2, entries 1–4).9 When employing myrcene
instead of isoprene the reaction proceeds smoothly lead-
ing to the corresponding cyclopentenols in higher yields
(55–70% yields, Table 2, entries 5–8). It can be noticed
that this reaction is only slightly affected by the bulki-
ness of the esters.
At this point, it should be mentioned that cyclopente-
nols are always accompanied by a small amount of
allylic ketones whose structures are represented in Table
3. Surprisingly, we noticed that when the temperature of
the reaction mixture was carefully maintained below
�40 �C, the allylic ketones 4 and 5 can be formed selec-
tively in moderate to good yields (Table 3).10 At this
temperature, the ester insertion appears to be regio
and stereoselective since the carbonyl products are
obtained as a single isomer. Esters generally react with
the most substituted double bond leading after hydro-
lytic workup to the head cis-allylic ketones (4a–f, Table
3, entries 1–6). The regioselectivity of this reaction can
be reversed through the use of the bulky ethyl-2,2-dim-
ethylpropionate (5g, Table 3, entry 7). Of significant
importance is also the fact that no trace of 1,2-adduct
(homoallylic ketones) or double insertion product
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(diketones) can be detected in these conditions. Finally,
it is worth noting that an analogous synthesis of allylic
ketones from dienes and carboxylic esters has been pre-
viously described by Rieke et al. with magnesium com-
plexes.11 Nevertheless they reported that this reaction
does not proceed when unsymmetric dienes are used.
Figure 3. Possible reaction pathways for the syntheses of 3, 4 or 5.
In view of the above results, we can propose two differ-
ent pathways conditioned upon the temperature (Fig. 3).
First, the titanium diene complex reacts with esters to
give the seven-membered oxatitanacycle D.12 Below
�40 �C, these complexes are stable and lead to the allylic
ketones 4 or 5 upon hydrolysis. When the temperature is
allowed to warm to room temperature, the oxatitanacy-
cle is rearranged to lead after hydrolytic cleavage to the
cyclopentenol 3. The thermal instability of the metalla-
cycle might be explained by the easy migration of the
ethoxy group at the b-position onto the metal as previ-
ously reported in the zirconium series.13

In summary, the reactions of titanium complexes of iso-
prene or myrcene with aldehydes led to 1,4- or 1,6-diols
with high stereoselectivity. The titanium–diene reagents
were also found to react with esters with a remarkable
chemoselectivity depending on the temperature reaction.
At room temperature, cyclopentenols were formed in
moderate to good yields, whereas at lower temperature
(�40 �C) allylic ketones were obtained with a complete
regioselectively. The titanium complex generally attacks
the ester at the most substituted double bond of the li-
gated diene. This last being also the most congested,
its reactivity is sometimes limited or precluded when a
bulky electrophile is used. Further efforts to extend the
scope of this reaction to functionalised dienes are
underway.
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